Starbound/attic/unneeded/StarUTable.hpp
2025-03-21 22:23:30 +11:00

202 lines
5.9 KiB
C++

#ifndef STAR_UTABLE_HPP
#define STAR_UTABLE_HPP
#include "StarTable.hpp"
namespace Star {
// Provides a method for storing, retrieving, and interpolating uneven
// n-variate data. Access times involve a binary search over the domain of
// each dimension, so is O(log(n)*m) where n is the size of the largest
// dimension, and m is the table_rank.
//
// BoundMode Wrap makes little mathematical sense for UTable.
template<typename ElementT, typename PositionT, size_t RankN>
class UTable {
public:
typedef ElementT Element;
typedef PositionT Position;
static size_t const Rank = RankN;
typedef Star::MultiArray<ElementT, RankN> MultiArray;
typedef Star::MultiArrayInterpolator2<MultiArray, Position> Interpolator2;
typedef Star::MultiArrayPiecewiseInterpolator<MultiArray, Position> PiecewiseInterpolator;
typedef Array<Position, Rank> PositionList;
typedef Array<Position, 2> WeightList2;
typedef Array<Position, 4> WeightList4;
typedef typename MultiArray::SizeList SizeList;
typedef typename MultiArray::IndexList IndexList;
typedef std::vector<Position> Range;
typedef Vector<Range, Rank> RangeList;
typedef std::function<WeightList2(Position)> WeightFunction2;
// Evenly spaced table that UTable can be resampled into.
typedef Table<Element, Position, Rank> ResampledTable;
// Set input ranges on a particular dimension. Will resize underlying storage to fit range.
void setRange(std::size_t dim, Range const& range) {
SizeList sizes = m_array.sizes();
sizes[dim] = range.size();
m_array.resize(sizes);
m_ranges[dim] = range;
}
template<typename... Rest>
void setRanges(RangeList const& ranges) {
SizeList arraySize;
for (size_t dim = 0; dim < Rank; ++dim) {
arraySize[dim] = ranges[dim].size();
m_ranges[dim] = ranges[dim];
}
m_array.resize(arraySize);
}
template<typename... T>
void setRanges(Range const& range, T const&... rest) {
setRanges(RangeList{range, rest...});
}
// Set array element based on index.
void set(IndexList const& index, Element const& element) {
m_array.set(index, element);
}
// Get array element based on index.
Element const& get(IndexList const& index) const {
return m_array(index);
}
MultiArray const& array() const {
return m_array;
}
MultiArray& array() {
return m_array;
}
void set2TermInterpolation(WeightFunction2 const& weightFunction, BoundMode boundMode) {
Interpolator2 interpolator2(weightFunction, boundMode);
m_interpolateFunction = [=](PositionList const& position) {
return interpolator2.interpolate(this->m_array, this->toIndexSpace(position));
};
m_resampleFunction = [=](SizeList const& size) {
ResampledTable resampledTable;
resampledTable.reshape(size);
for (size_t i = 0; i < Rank; ++i)
resampledTable.setRange(i, *this->m_ranges[i].begin(), *--this->m_ranges[i].end());
interpolator2.sample(this->m_array, resampledTable.array(), ResampleCoordinateOp(*this, resampledTable));
return resampledTable;
};
}
void setPiecewiseInterpolation(WeightFunction2 const& weightFunction, BoundMode boundMode) {
PiecewiseInterpolator piecewiseInterpolator(weightFunction, boundMode);
m_interpolateFunction = [=](PositionList const& position) {
return piecewiseInterpolator.interpolate(this->m_array, this->toIndexSpace(position));
};
m_resampleFunction = [=](SizeList const& size) {
ResampledTable resampledTable;
resampledTable.reshape(size);
resampledTable.eval([=](typename ResampledTable::PositionList const& position) {
piecewiseInterpolator.interpolate(this->m_array, this->toIndexSpace(position));
});
return resampledTable;
};
}
Element interpolate(PositionList const& coord) const {
return m_interpolateFunction(coord);
}
Element operator()(PositionList const& coord) const {
return interpolate(coord);
}
ResampledTable resample(SizeList const& size) const {
return m_resampleFunction(size);
}
// op should take a PositionList parameter and return an element.
template<typename OpType>
void eval(OpType op) {
m_array.eval(EvalWrapper<OpType>(op, *this));
}
private:
struct ResampleCoordinateOp {
typedef Position Scalar;
ResampleCoordinateOp(UTable const& u, ResampledTable const& t) :
utable(u), table(t) {}
Scalar operator()(size_t dim, size_t pos) {
return inverseLinearInterpolate(utable.m_ranges[dim], table.toTableSpace(pos, dim));
}
PositionList operator()(size_t dim, int i) {
return inverseLinearInterpolate(utable.getRange(dim),
table.getTransformedCoord(i, dim));
}
UTable const& utable;
ResampledTable const& table;
};
template<typename Coordinate>
inline PositionList toIndexSpace(Coordinate const& coord) const {
PositionList indexCoord;
for (size_t i = 0; i < Rank; ++i)
indexCoord[i] = inverseLinearInterpolate(m_ranges[i], coord[i]);
return indexCoord;
}
template<typename OpType>
struct EvalWrapper {
EvalWrapper(OpType &o, UTable const& t) : op(o), table(t) {}
template<typename IndexList>
Element operator()(IndexList const& indexList) {
PositionList rangeList;
for (size_t i = 0; i < Rank; ++i)
rangeList[i] = table.m_ranges[i][indexList[i]];
return op(rangeList);
}
OpType& op;
UTable const& table;
};
typedef std::function<Element(PositionList const&)> InterpolateFunction;
typedef std::function<ResampledTable(SizeList const&)> ResampleFunction;
RangeList m_ranges;
InterpolateFunction m_interpolateFunction;
ResampleFunction m_resampleFunction;
MultiArray m_array;
};
typedef UTable<float, float, 2> UTable2F;
typedef UTable<double, double, 2> UTable2D;
typedef UTable<float, float, 3> UTable3F;
typedef UTable<double, double, 3> UTable3D;
typedef UTable<float, float, 4> UTable4F;
typedef UTable<double, double, 4> UTable4D;
}
#endif